Nonlinear Interpolation and Total Variation Diminishing Schemes

نویسنده

  • François Dubois
چکیده

The Van Leer approach for the approximation of nonlinear scalar conservation laws is studied in one space dimension. The problem can be reduced to a nonlinear interpolation and we propose a convexity property for the interpolated values. We prove that under general hypotheses the method of lines in well posed in l ∩ BV and we give precise sufficient conditions to establish that the total variation is diminishing. We observe that the second order accuracy can be maintained even at non sonic extrema. We establish also that both the TVD property and second order accuracy can be maintained after discretization in time with the second order accurate Heun scheme. Numerical illustration for the advection equation is presented. Interpolation non linéaire et schémas à variation totale décroissante Résumé Nous étudions le schéma de Van Leer pour l’approximation de lois de conservation scalaires à une dimension d’espace. Nous proposons une propriété de convexité de l’interpolation non linéaire associée à cette méthode. Nous prouvons que sous des hypothèses générales, le schéma continu en temps conduit à un problème bien Rapport de recherche Aerospatiale Espace et Defense, n ST/S 46 195, 6 juin 1990, reproduit au chapitre 4.4 de la thèse d’habilitation de l’auteur (16 décembre 1992). Version abrégée publiée dans les Proceedings of the 3rd International Conference on Hyperbolic Problems, Björn Engquist and Bertil Gustafsson Editors, Chartwell-Bratt, volume 1, pages 351-359, 1991. Edition TEX du 15 août 2005, mise en pages du 19 juin 2010. ∗ Conservatoire National des Arts et Métiers (Paris) et Université Paris Sud (Orsay), [email protected]. ha l-0 04 93 55 5, v er si on 1 19 J un 2 01 0

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Monotonicity preserving multigrid time stepping schemes for conservation laws

In this paper, we propose monotonicity preserving and total variation diminishing (TVD) multigrid methods for solving scalar conservation laws. We generalize the upwind-biased residual restriction and interpolation operators for solving linear wave equations to nonlinear conservation laws. The idea is to define nonlinear restriction and interpolation based on localRiemann solutions. Theoretical...

متن کامل

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

In this paper, we developed a class of the fourth order accurate finite volume Hermite weighted essentially non-oscillatory (HWENO) schemes based on the work (Computers & Fluids, 34: 642–663 (2005)) by Qiu and Shu, with Total Variation Diminishing Runge-Kutta time discretization method for the two-dimensional hyperbolic conservation laws. The key idea of HWENO is to evolve both with the solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010